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Abstract

A parameter, v2p, based on the fitting error was introduced as a measure of reliability of DT-MRI data, and its properties were

investigated in simulations and human brain data. Its comparison with the classic v2 revealed its sensitivity to both the goodness of

fit and the pixel signal-to-noise-ratio (SNR), unlike the classic v2, which is sensitive only to the goodness of fit. The new parameter

was thus able to separate effectively pixels with coherent signals (having small fitting error and/or high SNR) from those with

random signals (having inconsistent fitting and/or low SNR). A practical advantage of v2p over the classic v2 was that v2p is quantified
directly from the data of each pixel, without requiring accurate estimation of data-dependent parameters (such as noise variance),

which often makes application of the classic v2 problematic. Analytical approximations of v2p enabled an objective (data-inde-

pendent) and automated calculation of a threshold value, used for internal scaling of the v2p map. Apart from assessing data reli-

ability on a pixel-by-pixel basis, v2p was used to develop an objective and generic methodology for the exclusion of pixels with

unreliable DT information by discarding pixels with v2p values exceeding the threshold. Pixels corresponding to very low SNR, and

poorly fitted cerebrospinal fluid and surrounding brain tissue, had increased v2p values and were successfully excluded, providing DT

anisotropy maps free from artifactual anisotropic appearance.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Diffusion tensor magnetic resonance imaging

(DT-MRI) has emerged as an efficient neuroimaging

modality for the description of water self-diffusion

properties through its provision of a variety of diffusion

tensor (DT) parameters, such as the trace, eigenvalues/

eigenvectors of the DT, and anisotropy indices [1]. The

pixel values of these parameters are sensitive to noise
and their quantitative reliability is affected by several

spatially varying factors [2,3]. For example, the signal-

to-noise ratio (SNR) of the baseline (non-diffusion-

weighted) DT-MRI data varies strongly across the brain
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being of high value in the cortex and of low value in
deep gray matter. Furthermore, high SNR parenchymal

regions close to cerebrospinal fluid (CSF) may be af-

fected adversely by CSF partial volume averaging

(PVA) and CSF flow and pulsation [4,5]. It is therefore

often necessary to exclude pixels containing unreliable

DT information. Most commonly, such pixels are ex-

cluded on the basis of the magnitude of their baseline

data [5]. However, such data pixel exclusion criteria are
biased towards a specific source of corrupted DT in-

formation (namely, low baseline magnitude), without

providing a generic measure of the quality of the DT

information in any particular pixel. Furthermore, the

applied thresholds are empirical, often vary between

different studies and rely on the calculation of data-

dependent parameters; for example, magnitude
erved.
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thresholding requires data noise estimation, using the
intensity of the image background [6].

Since DT-MRI data are first fitted to the DT equa-

tions, the fitting error itself may offer a sensitive indicator

of the DT-MRI data quality on a pixel-by-pixel basis.

Recently [7], a novel parameter based on the fitting error

was briefly introduced and used as part of an empirical

(data-dependent) pixel exclusion procedure. This study

characterises that parameter more fully and thereby de-
velops an objective (data-independent) methodology for

assessing the quantitative reliability of theDT-MRI data.
2. Methods

2.1. Definition of fitting error measures

The N measured DT-MRI signals Smi (i ¼ 1; 2; . . . ;N )

at a given pixel are fitted to model signal equations of

multivariate monoexponential decay [1]; consequently,

the baseline signal Sf 0 and the diffusion tensor Df are

estimated. As a result, for every Smi, a fitted Sfi is cal-

culated as

Sfi ¼ Sf 0 expð�Bi : DfÞ; ð1Þ
where Bi is the b-matrix corresponding to Smi and : de-

notes matrix scalar product [1]. Therefore, the squared

fitting error DS2 for N fitted DT-MRI signals at a given

pixel is

DS2 ¼
XN

i¼1

ðSmi � SfiÞ2: ð2Þ

The classic v2 measure, v2c , is a normalised version of

DS2, where each term in DS2 is divided by the noise

variance r2 of the respective measured signal; r is the

standard deviation (SD) [8]. Since all measured signals

in any image pixel are assumed to have the same r, the
same normalisation applies to DS2 of all image pixels

v2
c ¼ DS2=r2: ð3Þ
The proposed parameter v2p introduced in [7] is based

on DS2, but uses a pixel-dependent normalisation factor;

this is the total energy of the measured signals at each

pixel:

v2
p ¼

DS2

PN
i¼1 S

2
mi

: ð4Þ
2.2. Simulations

Simulations of DT-MRI signals with added noise (in

quadrature) for various anisotropy configurations and

SNR values of the baseline signal were performed as
described in [3]. Three DT sampling schemes were con-

sidered, all with N ¼ 78. Scheme A consisted of two sets

of isotropically arranged DW gradient directions: six
directions at b-value bl ¼ 100 s/mm2 and 72 directions at
b-value bh ¼ 1600 s/mm2 [3]. Scheme B used 13 iso-

tropically arranged DW gradient directions at six equi-

distant b-values: 100, 400, 700, 1000, 1300, and 1600 s/

mm2. Scheme C was identical to A with the exception

bh ¼ 1200 s/mm2.

2.3. Imaging experiments

DT-MRI was performed on normal volunteers using

a 1.5 T clinical MRI scanner (Eclipse, Philips Medical

Systems, Cleveland, OH) equipped with an actively

shielded whole body gradient set (maximum strength per

axis of 27mT/m, and slew rate of 72mT/m/s). Standard

(spin-echo) and CSF-suppressed (FLAIR-prepared)

DT-MRI was performed on 13 normal volunteers (8

males and 5 females, age range 25–42 years), using
Scheme A. At the same imaging session, standard

DT-MRI was performed on three of the above volun-

teers (males, age range 28–42 years), using Scheme

B. Scheme C was implemented using standard DT-MRI

on nine normal volunteers (5 males, 4 females, age range

24–46 years), different from those above. Details of the

experimental protocols are given in [7].
3. Results

Fig. 1 shows simulated v2c and v2p distributions for

isotropy (k ¼ 0:7� 10�3 mm2/s) and for various SNR

values of the baseline signal SNR0, using DT scheme A.

For any SNR0 � 0; v2c follows the same distribution,

namely the v2 distribution with N � 7 (¼ 71) degrees of
freedom (df). For SNR0 ¼ 0; v2c is shifted towards

smaller values because, for this case, it is v2c=0:655
2

(rather than v2c) which follows the v2 distribution (Eq.

(A.1)(a), Appendix A). While large v2c values reflect

unreliable DT fitting, small v2c values do not necessarily

correspond to useful DT information, since they may

arise from random signals (SNR0 ! 0). On the other

hand, v2p is sensitive to SNR0, being a decreasing func-
tion of SNR0. Importantly, it gives well separated dis-

tributions between coherent (SNR0 6¼ 0) and random

(SNR0 ¼ 0) signals. This property holds independently

of the number N of fitted signals, as shown in Fig. 2,

which plots a lower limit kmin of the ratio

v2pðSNR0 ¼ 0Þ=v2pðSNR0 � 0Þ (Eq. (A.7), Appendix A)

as a function of N , for SNR0 ¼ 15.

Fig. 3 assesses the sensitivity of v2p on fibre shape and
DT scheme. The dependence of DW signal magnitude

(and thus of the normalisation factor for DS2 in Eq. (4))

on fibre shape and DT scheme shifts the v2p distributions.
For any DT scheme, the v2p distribution of the isotropic

case is shifted to the right of the v2p distribution of the

most anisotropic fibre (k1 ¼ 1:9; k2 ¼ k3 ¼ 0:1�
10�3 mm2/s). However, the shift between the peaks of



Fig. 2. Plot of kmin (lower limit of the ratio

v2pðSNR0 ¼ 0Þ=v2pðSNR0 � 0Þ, given by Eq. (A.7)) as a function of the

number N of fitted signals, for SNR0 ¼ 15.

Fig. 1. Simulated v2c (a) and v2p (b) distributions for isotropy (k ¼ 0:7� 10�3 mm2/s) and for various SNR values of the baseline signal SNR0.

The scaling of the vertical axes is in arbitrary units (a.u.).

Fig. 3. Simulated v2p distributions of isotropic (iso) and cylindrically

symmetric strongly anisotropic (cyl) fibres for DT schemes A, B and C,

using SNR0 ¼ 15.
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the isotropic and anisotropic v2p distributions varies with
the DT scheme; it is largest for scheme A and smallest

for scheme B. Since scheme A acquires the largest

number of DW signals at the highest b-value, it pro-

duces the rightmost v2p distributions for a given fibre

type. Similarly, scheme B gives the leftmost v2p distri-

butions. Although the distributions of Fig. 3 correspond

to SNR0 ¼ 15 (representative of the SNR0 of our ex-
perimental data), the same relative shifts of the v2p dis-

tributions occur for other SNR0 values. It should be
noted that, despite their dependence on experimental

(DT scheme) and physiological (fibre shape) parameters,

all the v2p distributions of Fig. 3 remain well-separated
from the v2p distribution for SNR0 ¼ 0 (Fig. 1b).

Figs. 4a and b plot v2p and v2c pixel distributions over
all the 13 normal subjects for standard and CSF-sup-

pressed (FLAIR) DT-MRI, using DT scheme A. The

distributions of both v2p and v2c are bimodal. For v2p
(Fig. 4b), pixels with low SNR0 and/or inconsistent fit-

ting contribute to the right-hand side lobe (referred

thereafter as ‘‘noise’’ lobe) while those with consistent
fitting (brain tissue) contribute to the left-hand side lobe

(referred thereafter as ‘‘signal’’ lobe). For v2c (Fig. 4a)

the relative position of the two lobes is reversed. The v2p
sensitivity to SNR0 and the FLAIR-induced decrease

in SNR0 account for the shift of the v2p signal lobe in

FLAIR compared with that in standard DTI. In

agreement with the simulations, these distributions

demonstrate that while the v2p signal lobes are upper
bound by the respective noise lobe, such a bound is

absent for the case of v2c . Therefore, v2p as opposed to v2c
intrinsically provides a reliability measure of the DT-

MRI data, since it ensures that ‘‘random’’ pixels will

necessarily have large v2p, and can be discarded.

Fig. 4c plots v2p pixel distributions for the three DT

schemes, using standard DT-MRI. In agreement with

the simulations (Fig. 3), the position of the signal lobes
of v2p depends on the DT scheme, with the lobes of

schemes C and B being shifted to the left of the signal

lobe for scheme A. Specifically, the peaks of the signal

lobes for schemes B and C are shifted relative to the

peak of the signal lobe for scheme A, by about 40% and

20%, respectively (the shifts are reported as percentages

of the v2p value, corresponding to the peak position of

the signal lobe for scheme A). This is comparable with
the relative shift between the peaks of the signal lobes in

standard and FLAIR DT-MRI for scheme A (Fig. 4b),

which is 30% of the v2p value, corresponding to the peak

position of the signal lobe for FLAIR DT-MRI. Fur-

thermore, the signal lobes of the three schemes have

different widths; this is because, as shown in Fig. 3, the

dependence of v2p on fibre anisotropy varies with the DT



Fig. 4. Experimental v2p and v2c pixel distributions over all 13 normal

subjects for standard (a) and CSF-suppressed (b) DT-MRI using DT

scheme A. (c) Experimental v2p pixel distributions for DT schemes A, B

and C (the vertical axes have been scaled, so that the noise lobes have

equal height).

Fig. 5. (a) Superposition of empirical (simulated v2p for SNR0 ¼ 0, Fig. 1b and

using Eq. (A.4)) v2p distributions for SNR0 ¼ 0. (b) Plot of v2p0 derived from si

of freedom (df); df ¼ N � 7, N ¼number of fitted signals.
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scheme. Since this dependence was larger for scheme A,
this scheme gave the widest signal lobe. Similarly,

scheme B gave the narrowest signal lobe. Importantly,

there is excellent agreement between the v2p noise lobes

of the three DT schemes, and these lobes are clearly

separated from the signal lobes.

The experimental v2p noise lobes (Fig. 4b) and the

simulated v2p distribution for SNR0 ¼ 0 (Fig. 1b) are

superposed in Fig. 5a. These distributions peak at the
same v2p, and have very similar shape; the slight mis-

match at their lower half most likely arises from pixels

with SNR0 � 0 and inconsistent fitting, such as those

corresponding to Nyquist ghosting and the brain skull.

As a result, the v2p noise lobe can be characterised purely

numerically using the simulated v2p distribution for

SNR0 ¼ 0. It also provides a data-independent refer-

ence relative to which the v2p value of a specific pixel
is assessed. A threshold v2p0 is therefore determined, so

that only pixels with v2p < v2p0 are acceptable. Specifi-

cally, the DT-MRI data are tested against the null hy-

pothesis H, that fitting is entirely due to random

magnitude variations in the data. The probability den-

sity function (pdf) p of H is the v2p distribution for

SNR0 ¼ 0. A small value P0 of the cumulative proba-

bility P of H is then chosen (for example, P0 ¼ 0:001),
such that when P ðv2pÞ < P0, the null hypothesis is re-

jected and the pixel is considered to contain reliable DT

information. Thus, P ðv2p0Þ ¼ P0. Since P is not analyti-

cally known, the v2p distribution for SNR0 ¼ 0 needs to

be generated empirically from simulations. Alterna-

tively, v2p for SNR0 ¼ 0 can be approximated by a scaled

v2 statistic with N � 7 df (Eq. (A.4)), for which p and P
are available analytically [8]. Fig. 5a (label ‘‘Analytical’’)
plots p for the scaled v2 corresponding to the parameters

used in this work (N ¼ 78; df ¼ 71;m ¼ 1). The analyt-

ical v2p distribution peaks at the same v2p as the empirical

v2p distributions (experimental or simulated) and is

slightly wider than the latter. Therefore, the analytical

threshold v2p0 will be smaller than that derived from the

simulations, and this observation holds consistently over
experimental noise lobes, Fig. 4b) and analytical (scaled v2 with 71 df,

mulations and the analytical approximation as a function of the degrees
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a wide range of df (Fig. 5b). Apart from its computa-
tional efficiency, the analytical approximation will thus

result in reduced, more conservative thresholds v2p0, in-
creasing the confidence that the surviving pixels contain

reliable DT information.

Fig. 6 shows v2 (v2c and v2p) maps of the same slice of a

volunteer for standard and FLAIR DT-MRI. The v2p
maps (Figs. 6b and g for standard and FLAIR DT-

MRI, respectively) have been scaled linearly from 0 to
the analytical v2p0 (¼ 0.109). The v2c maps (Figs. 6c and h

for standard and FLAIR DT-MRI, respectively) have

been scaled linearly between 0 and 175, which corre-

sponds to 10�10 probability that v2c will exceed this value

by chance (using the notation in [8], Qðv2c ¼ 175Þ ¼
1� P ðv2c ¼ 175Þ ’ 10�10, for df ¼ 71). Baseline images

are also shown for anatomical reference (Figs. 6a and f

for standard and FLAIR DT-MRI, respectively). The v2

maps confirm the different sensitivity of v2c and v2p on

SNR0 and goodness of fit. The contrast in the v2p maps is

modulated jointly by SNR0 and the fitting quality. Thus

pixels with v2p exceeding v2p0 correspond to: (i) very low

SNR0 (image background in all maps, and CSF areas in

the FLAIR v2p maps), and (ii) poorly fitted CSF areas (in

standard DTI) and bordering brain tissue (in all maps).

Within brain tissue, v2p is smaller than v2p0 and the con-
trast is modulated locally by the goodness of fit (for

example, hyperintense rim running diagonally between

the left side of the sagittal sinus and the posterior tip of

the right ventricle, most likely arising from systematic

hardware-induced instability, causing, for example, in-

complete fat suppression), SNR0 (increased intensity in
Fig. 6. Standard (a–e) and CSF-suppressed (f–j) DT-MRI data of a single sli

0–0.109 (¼ analytical v2p0), (c,h) v2c maps, scaled 0–175 (Qðv2c ¼ 175Þ ¼ 1� Pð
0–1, before (d,i) and after (e,j) v2p thresholding.
the left frontal lobe where SNR0 is low) and degree of
anisotropy (decreased intensity in strongly anisotropic

regions, such as the internal capsule and the splenium of

the corpus callosum). Contrast in the v2c maps is mod-

ulated mainly by the goodness of fit. As a result, for

standard DT-MRI, within brain volume the hyperin-

tense areas in the v2c maps agree well with those in the v2p
maps. At the same time, pixels with low SNR0 appear

hypointense in the v2c maps and thus well fitted. Since
FLAIR DT-MRI reduces PVA between tissue and CSF,

hyperintense pixels (in the v2c maps of standard DT-

MRI, Fig. 6c) bordering cerebral tissue and CSF spaces

appear isointense in the v2c maps of FLAIR DT-MRI

(Fig. 6h). However, these areas may still contain unre-

liable DT information due to their low SNR0 and are

clearly demarcated in the v2p maps of FLAIR DT-MRI

(Fig. 6g), causing the marked difference between v2c and
v2p maps of FLAIR DT-MRI.

Figs. 6d, e, i, and j show relative anisotropy (RA)

maps before (Figs. 6d and i) and after (Figs. 6e and j) v2p
thresholding (using the analytical v2p0). In accordance

with the respective v2p maps, the RA maps confirm that

thresholding had a stronger effect on the FLAIR than

on the standard DT-MRI RA maps. Importantly, pixels

within CSF and neighbouring tissue appearing as
pseudo-anisotropic structures in standard RA maps

(Fig. 6d, anterior part of the left ventricle) were also

eliminated in Fig. 6e, as a result of the v2p filtering.

Fig. 7 compares v2p maps of the three DT schemes for

standard DT-MRI. The maps for schemes A and B

correspond to the same slice of one subject while the
ce from one subject: (a,f) baseline (b¼ 0) images, (b,g) v2p maps, scaled

v2c ¼ 175Þ ’ 10�10, for df ¼ 71), relative anisotropy (RA) maps, scaled



Fig. 7. v2p maps of the three DT schemes using standard DT-MRI,

scaled as in Figs. 6b,g. The same slice of one subject is shown for

schemes A (a) and B (b); a homologous slice of a different subject is

shown for scheme C (c). Phase-encoding direction: left–right (A and

B), anterior–posterior (C).
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map for scheme C corresponds to a homologous slice of
a different subject. Phase-encoding direction is left–right

for schemes A and B, while it is anterior–posterior for

scheme C. Parenchymal tissue appears with highest v2p
values (though still smaller than v2p0) in the map of

scheme A and with lowest in that of scheme B. Fur-

thermore, contrast between low- and high-anisotropy

parenchymal areas appears stronger in the map of

scheme A and smallest in that of scheme B. Thus, the
maps of Fig. 7 confirm the results from the simulations

(Fig. 3) and the data histograms (Fig. 4), concerning the

dependence of v2p for SNR0 � 0 (or equivalently, the v2p
signal lobes) on DT scheme and fibre anisotropy.

However, the most important finding is that the maps

reveal similar hyperintense areas of unreliable DT in-

formation independent of the DT scheme, while using

the same intensity scaling (0� v2p0). It should be noted
that, due to its phase-encoding direction, scheme C was

the most sensitive to ventricular CSF flow and pulsation

and, thus Fig. 7c showed more extensive hyperintense

areas in the vicinity of the ventricles.
4. Discussion

This paper characterises and explores the properties

of a modified fitting error parameter, v2p, for DT-MRI

data. The key feature of this parameter is that it pro-

vides clear separation between noise and signal lobes

with the former lobe being an upper bound of the latter.

This property is due to the normalisation of the squared

fitting error DS2 (indicative of the goodness of fit) by a

quantity representative of the pixel SNR0 (the total
energy of the measured signals). Since, for given N and

SNR0 � 0, v2p (or equivalently the v2p signal lobes) de-

pends on SNR0 by definition (otherwise it would not

have been able to differentiate between signal and noise

lobes), it is not uniquely distributed. However, the dis-

tribution of v2p when SNR0 ¼ 0 was unique for given N
and in excellent agreement with experimental v2p noise

lobes. Thus, the rationale for using v2p is essentially
based on the invariant, and objectively defined (not
affected by specific experimental parameters, apart from
N ) distribution of v2p for SNR0 ¼ 0 (or equivalently the

v2p noise lobes). The exact position of the v2p signal lobes

is not critical as long as they are clearly positioned below

the noise lobes; quantitatively, this is ensured by im-

posing the condition that the signal lobe is below the v2p
value (v2p0) corresponding to the 0.001 percentile of the

noise lobe. The additional dependence of v2p (when

SNR0 � 0) on fibre shape and DT scheme, did not af-
fect the validity of this condition. This was demon-

strated by v2p distributions (simulated and experimental)

and maps using different DT schemes; all the v2p signal

lobes were clearly separated from the noise lobe while

the maps depicted areas of unreliable DT information

which were independent of DT scheme and fibre shape.

Since these results were obtained using diverse DT

schemes, the DT scheme will not confound the separa-
tion between signal and noise v2p lobes for N 6¼ 78. This

ensures the applicability of v2p beyond the specific DT

schemes used in this work. However, it should be noted

that, similar to v2c ; v
2
p requires N > 7 so that it is not zero

by definition. In practice this condition is often met,

since the need for improved estimation of DT, causes

most studies to use N > 7, applying DTI schemes with

multiple b-values and/or DW directions [9]. Further-
more, if parameters such as SNR0 and N are so low that

the v2p signal and noise lobes overlap, then the use of v2p
would not be informative because DT information will

then be unreliable globally (for every pixel) not region-

ally; for example, calculated DT will have negative

eigenvalues.

An implication of the dependence of v2p on SNR0 is

that it cannot provide a goodness-of-fit measure for the
DT model. On the contrary, similar to the majority of

DT-MRI applications [9], it implicitly accepts this

model, and, provides an ad hoc and heuristic measure of

reliability of DT information. Low reliability (large v2p)
arises from large fitting error (for example, due to PVA

between tissue and CSF, CSF flow/pulsation) and/or

low energy of the measured signals (for example, due to

low SNR0), and may increase the apparent anisotropy
of the affected areas. Highlighting such problematic ar-

eas is the main utility of the v2p measure. Thus, v2p should
not be considered as an alternative for measures which

test the validity of the DT model (classic v2c) or evaluate
and implement more complex models for analysis of

DT-MRI data [10,11]. For example, taking into account

the areas with v2p > v2p0 in the v2p maps, it is unlikely that,

brain regions, which do not obey the DT model just
because of the presence of multiple intravoxel fibres, will

have v2p > v2p0.
Alternative quantities may be used for normalisation

of DS2, aiming to reflect the pixel SNR0. An example is

the square of the baseline signal, either acquired or Sf 0
(Eq. (1)). Although the resultant alternative error mea-

sure will give signal lobes independent of DT scheme
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and fibre shape, it will still depend on SNR0. Most im-
portantly, it will suffer several constraints. For example,

using only the baseline signal for normalisation, this

measure will underestimate areas of unreliable DT in-

formation, which have strong baseline signal; for ex-

ample CSF spaces and surrounding tissue affected by

PVA and CSF flow/pulsation. In contrast, since these

areas have large apparent diffusivity, their DW signals

will have small magnitude, leading to increased values of
v2p. Further constraints concern the noise lobes. For

example, using a few averages for the measured baseline

signal is not sufficient to produce well-defined noise

lobes; the robustness of the v2p noise lobes was due to the

effective averaging of N noise signals. In fact, for given

N , the noise lobes and the threshold of the alternative

measure will not be uniquely determined, because they

will depend on either the number of low b-value signals
(which is specific to DT scheme) or the number of av-

erages of the baseline (b¼ 0) signals (which may be ac-

quired independently of the DT scheme); thus such

alternative measure may be inappropriate for our

descibed methodology.

A second feature of v2p is that it is quantified directly

from the data of the respective pixel, without relying on

accurate calculation of data-dependent parameters,
which may often be problematic. An example of such a

parameter is the data SD (r), required for calculation of

v2c . The presence of non-quantifiable noise sources (such
as physiological noise, PVA and eddy currents), often

causes r to be underestimated leading to increased v2c
pixel values and exceedingly low v2c probabilities of

model acceptance [10]. This problematic quantification

of v2c is illustrated in: (i) Fig. 4a, where a large part of the
signal v2c lobes has v2c > 114, corresponding to

Q 
 0:001, and (ii) in Figs. 6c and h, where the upper

intensity scaling corresponds to Q ’ 10�10, and brain

tissue appears with uniformly high grayscale level, es-

pecially in Fig. 6c. As a result, calculation of v2c is often
limited to either spatially averaged values [12] (not al-

lowing assessment on a pixel-by-pixel basis) or relative

values with respect to the v2c of a reference region (not
allowing v2c quantification through the v2 probability)

[13]. In contrast, absolute pixelwise quantification of v2p
is possible without these complications. Furthermore,

the analytic approximation of v2p for SNR0 ¼ 0 (Eq.

(A.4)) enables an objective (data-independent) and au-

tomated calculation of the threshold v2p0, which is used

for internal scaling of the v2p maps and for data filtering.

In contrast, the absence of the present analysis in [7] led
to non-robust (data-dependent) determination of v2p0,
giving markedly different v2p0 for standard and FLAIR

DT-MRI.

Compared with commonly used filtering methods,

based on the magnitude of the baseline signal, v2p pro-

vides more generic filtering since it is not biased towards

an individual source of erroneous DT information. For
example, magnitude thresholding could not have dis-
carded the high SNR0 pixels at the interface between

CSF and tissue and within ventricular areas in the

standard DT-MRI RA map of Fig. 6d. These areas

appear often pseudo-anisotropic (cf, similar regions of

the anisotropy maps in [14]), and thus, filtering using v2p
will eliminate such artifacts. It should be noted that

since v2p and v2c give very similar hyperintense areas

within brain for standard DT-MRI (Figs. 6b and c), a
potential alternative to v2p filtering, would have been the

combination of magnitude thresholding with v2c thres-

holding; the v2c threshold should correspond to exceed-

ingly small Q values (eg, 10�10, which was used as the

upper grayscale level in Figs. 6c and h), in order to ac-

count for underestimation of noise, as explained above.

Compared with this alternative, v2p thresholding has the

advantages that it is both objective (it does not require
estimation of data-dependent noise SD) and quantita-

tive (it represents a confidence interval for the thers-

holding; 0.001 in this work).

Various extensions of the use and applications of v2p
are possible, but their detailed description exceeds the

scope of this study which focuses on the characterisation

of v2p; therefore they are only briefly discussed. First, in

addition to discarding pixels with v2p > v2p0; v
2
p may be

used to generate a continuous weighting function for

data with v2p < v2p0, in which the smaller the v2p value the

higher the weight. Such weighting function may be

useful in assessing mean values of DT parameters over

selected regions or among different subjects. Since v2p
tends to take smaller values as anisotropy increases, the

weighting will increase differences between low and high

anisotropy areas. Secondly, given that the v2p maps
(Figs. 6b and g) show stronger contrast between brain

structures than the v2c maps (Figs. 6c and h), v2p (as

opposed to v2c) may also be used for the assessment of

tissue homogeneity within a region and for delineation

of boundaries between tissue and CSF, complimentary

to other scalars, such as the trace of the DT [15]. The

sensitivity of v2p to fitting error, SNR0 and fibre shape

will be particularly advantageous for this purpose.
Conversely, the v2p maps may be useful in assessing the

regional extent of tissue with altered diffusion properties

due to pathologies. For example, cysts and oedematous

areas (due to stroke or trauma) will appear hypointense

in the v2p maps (because of their high SNR0 and con-

sistent fitting due to absence of flow), while the border of

these areas will have increased v2p (due to PVA with

normal tissue). Importantly, although v2p was defined
and characterised using DT-MRI data, no assumption

specific to DT-MRI was made. Thus, similar to v2c ; v
2
p is

generally applicable for the assessment of data fitting in

the presence of noise; for example in the cases of ap-

parent diffusion coefficient (ADC) and T2 mapping.

In conclusion, the fitting error parameter v2p separates
effectively pixels with coherent signals from those with
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random signals and is weighted by both the pixel SNR
and the goodness of fit. It is quantified directly from the

data of each pixel without requiring accurate estimation

of data-dependent parameters, and its analytical ap-

proximations enable an objective and automated cal-

culation of a threshold value, used for internal scaling of

the v2p maps. It is proposed as a measure for assessing

reliability of DT-MRI data on a pixel-by-pixel basis.
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Appendix A

Assuming m averages are performed in magnitude

DT-MRI data, the following hold [6]:

rn ¼
0:655ffiffiffiffi

m
p r ðaÞ hS2

ni ¼ ð1:253rÞ2 þ r2
n ðbÞ;

ðA:1Þ
where r is the signal SD of a single average when

SNR0 � 0; Sn; rn are the magnitude and SD of averaged

data containing only noise (SNR0 ¼ 0) and hi denote
mean value (mv). Following from Eqs. (2)–(4), it is, for

SNR0 ¼ 0:

v2 ¼ DS2=r2
n; ðA:2Þ

XN

i¼1

S2
mi � NhS2

ni: ðA:3Þ

In Eq. (A.2), v2 follows the v2 distribution with N � 7

degrees of freedom (df). Combining Eqs. (4), (A.1)–
(A.3), we get:

v2
p � av2 � v2

s a � N�1 1
�

þ m1:9132
��1

; ðA:4Þ

where v2
s is the scaled version of the v2 statistic and a is

the scaling factor. For the parameters used in this work

(m ¼ 1;N ¼ 78), a ¼ 2:75� 10�3.

For SNR0 � 0, Eq. (4) can be written:

v2
p ¼

r2

PN
i¼1 S

2
mi

v2: ðA:5Þ

For given N , r, SNR0 and v2, v2p becomes maximum

when the denominator in Eq. (A.5) is minimum. This

happens when the DTI dataset consists of one baseline

signal and N � 1 maximally attenuated DW signals.

Therefore:

v2
pm ¼ r2

2 2
� � v2;
S0 1þ ðN � 1Þb
where v2
pm is the maximum v2

p for SNR0 � 0, S0 is the
magnitude of the baseline signal and b is the attenuation

factor of the DW signal magnitude. Given that usually

bD6 1:1 [9], a value of b which safely maximises v2
pm is

e�1:1 ’ 0:3. Defining SNR0 � S0=r, such that SNR0 de-

scribes the SNR of the baseline signal after any signal

averaging, we have:

v2
pm ¼ SNR�2

0 1
�

þ ðN � 1Þb2
��1

v2: ðA:6Þ

Combining, Eqs. (A.4) and (A.6), an estimation of

the lower limit kmin of the ratio between v2p for
SNR0 ¼ 0 and v2p for SNR0 � 0 is:

kmin ¼
v2
s

v2
pm

¼ aSNR2
0 1
�

þ ðN � 1Þb2
�
: ðA:7Þ
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